
Beam Summing
Local application

Fri, Jun 17, 1994

For monitoring long term accumulations of raw data such as beam charge, it is
necessary to do the pulse-by-pulse summing locally, then making the accumulations
available to any host system. This note describes an implementation for this as a
local application.

Parameters layout:

ENABLE B<00C4> BSUM ENABLE

BEAM B<009F> NO BEAM STATUS

OUTADDR <2F00>

CHAN1 C<001B> BEAM ACCUM TEST

CHAN2 C<0000>

CHAN3 C<0000>

CHAN4 C<0000>

The ENABLE Bit# enables operation of the BSUM local application. The BEAM status
Bit# indicates what bit signals the presence of a scheduled beam pulse of the type
summed by this application. The “beam” state is the sign bit of this parameter. The
OUTADDR parameter is a 16-bit address in low memory where the output results are
written. This address should be in an area that is zeroed at system reset time, in
order to start the accumulations at zero and to signal a reset has occurred. (Consult
with an expert to determine an appropriate address to use.) The rest of the para
meters are analog channel#s whose readings provide the raw data to be summed. A
zero channel# is ignored, but it occupies a “slot” in the output data structure.

The data structure of the accumulated data is as follows:

sum: ARRAY[1..4] OF Integer; { 4-word sum of beam data }

cnt: ARRAY[1..2] OF Integer; { 2-word sum of beam cycles }

tot: ARRAY[1..2] OF Integer; { 2-word sum of all cycles }

(Here, an “Integer” is a 16-bit word.) For each channel specified, a “slot” of 8 words
is used starting at OUTADDR. The SSDN of the Acnet database entry for the reading
property can include this OUTADDR. For example, if the source node were node 61E,
and the base address of the data structure were 00002F00, one could then have the
following SSDN structure: 1D02/061E/0000/2F00.

Beam Summingp. 2

Upon reading this data, a host program can compute the accumulation (as a double
precision floating point value) of each signal as follows, where k=32768:

acc:= ((sum[1]*k + sum[2])*k + sum[3])*k + sum[4];

nBP:= cnt[1]*k + cnt[2];

all:= tot[1]*k + tot[2];

These values need to be referenced to the set of values obtained during the last
query by the host program, in order to get the amount of beam that has been
accumulated over the last query interval. Upon conversion to engineering units, the
data can be archived as needed. Note that this scheme works for multiple users
without conflict.

The front end keeps 15 bits of precision in each word in order to maintain positive
values that simplify the above formulas in hi-level language. (It also avoids the
word-swap problems that can result from differences with Vax data formats, since
words are automatically byte-swapped by Fermilab networking hardware.) Note
that a 60-bit long summation will never overflow in anyone’s lifetime. Also, 30 bits
of pulses at 15 Hz is more than 2 years. Site-wide power outages occur more often
than that. A reset of the front end clears the accumulation area.

The host program will zero its own version of the accumulations according to its
particular implementation. If the host program finds that the accumulation has
dropped to a lower value than it had during its previous query, it can assume that
the system has reset and restarted its accumulations. The most beam accumulation
that could have been lost would be that which occurred since the last query.
Assuming a one-minute query interval, for example, this should not be significant.
(Typical times between resets of Linac front end stations are measured in months.)

